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Directed chaotic transport in Hamiltonian ratchets
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We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with
spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of
particles can show directed ballistic transport in the absence of an average force. We discuss general conditions
for such directed transport like a mixed classical phase space. A sum rule is derived which connects the
contributions of different phase-space components to transport. We show that regular ratchet transport can be
directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems.
For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a
semiclassical expression for the distribution of level velocities which encode the quantum transport in the
Floguet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic
sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.
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I. INTRODUCTION In fact, as we shall argue in Sec. Il, in systems with a

I . . . mixed phase space a sum rule requires chaotic transport to
Hamiltonian systems with a mixed phase space remain gompensate for the directed transport possibly occurring in

c_hallenge within the fi(_ald. of nonlinear_dynamics, bqth P'as'regular phase-space regiof3]. An important conclusion
sical and quantum. This is usually attributed to the intricate(sec. |1 B is that the ballistic chaotic transport has nothing to
typically self-similar structure of the phase space in thesejo with internal structures of a chaotic phase-space compo-
systems. There exist, however, more tangible effects whichent such as cantori or other partial transport barriers. All
also require a coexistence of regular and chaotic dynamictiese complicated substructures leading to, for instance,
but no particular fine structure. A prominent example is di-Lévy walks and anomalous diffusion in Hamiltonian ratchets
rected transport: An elementary yet decisive consequence 61,4,5] need not be considered in detail in order to under-
a mixed phase space is the existence of distinct regions thatand that ballistic transport dominates for long times.
support qualitatively different dynamics and do not commu- Deterministic ballistic transport due to a dynamical re-
nicate with each other. Directed transport may arise locallystriction of trajectories to certain phase-space regions has
in regular components of phase space. As a consequence oPgen observed before in dissipative syst¢6as3], where the
g|oba| sum ru|e, and in the absence of certain Symmetriesy pghase-space volume is ContraCtlng with time. In this situation

can then be conferred to the chaotic component, as we wiffne speaks of deterministic .ratchets becaus_e of the analogy
show in this paper. to the well-known stochastic ratchet8rownian motors

Chaotic transport in extended Hamiltonian systems is usu[%hiig] generate directed motion from nonequilibrium noise

ally associated with undirected diffusion: The width of the h h hi di d dissipati b
spatal distributionix grows with ime s some power law 7%, X0 T ST, T SRR LR e e
(AX) ~twith a betwgen 0 and 2. Only recently has it beentransport, since the natural time arrow determined by dissi-
d!scovered Fhat_ even in thg absence. of amean external gr ation is lost and has to be replaced by other mechanisms
dient, chaqt|c d|ffu5|qn n dnvep Hamiltonian systems can b. reaking time-reversal invariance. On the other hand trajec-
accompanied by a directed drift. The corresponding ballistiy e can maintain a memory of their initial velocity for an
component of transpoifl] may appear surprising on first infinite time. Therefore a precise definition oHamiltonian

sight, since a hallmark of chaos is the decay of all Correla_ratchetis not completely straightforward. The mere fact that

tlcl)tlast_mclugmg an eth:(.act_lvel_randolrn%zhatltotrr]] of the velloc!iy in unbiased systems directed transport can exist and survive
with ime. However, this implies only that Ihe- mean VEIOCIty ¢, infinite time is trivial; just take a free particle with some

of a typical chaotic trajectory approaches an asymptomhonzero initial velocityvy# 0. In this sense every extended

value which is characteristic of the chaotic phase-space r&3amiltonian system would be a ratchet

gion as a whole. In the absence of additional symmetries ", o ¢, velocity dispersion an ensemble of free particles

thTre.;stnobgeneral reason requiring this asymptotic MeaRill also spread ballistically, i.e., as fast as its center of mass
velocity to be zero. is transported. On the other hand, as pointed out above, there

exist Hamiltonian systems where transport is ballistic, but
the spreading is not. They are characterized by a locking of
*Electronic address: holger@chaos.gwdg.de the average velocity to énonzer9 value which does not
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| |: | Ll I =0 It comes as a rather unexpected finding that Hamiltonian
ces VB ratchets have applications on macroscopic, even geophysical
=173 scales where apparently friction prevdils]. Indeed, in hy-
| |. -..l | | I drodynamics, even in the presence of dissipation, restricting
L the description to position space results in a Hamiltonian
v =273 form _of the ev_o_lution_equations_if only the fluid iscon"_l- _
| |...'::| | | I pressible Specifically, in geophysical applications, a periodic
potential reflects the periodic boundary conditions on Earth

(a) X with respect to longitude, while an asymmetry in the trans-
= verse coordinate is implied by the dependence of the Coriolis

force on latitude.
/ Going in the opposite direction, Hamiltonian ratchets may
: 0 find applications on scales where quantum effects become
Vg ; important. For example, in semiconductor nanostructures
- employed to investigate solid-state ratchielt8,20 such ef-
fects were observed. A Hamiltonian ratchet with negligible
dissipation can be realized on this basis if the structure size is
further decreased, such that electronic motion occurs in the
ballistic regime. But this will even enhance quantum correc-
(b) tions.
In Ref. [3] it was concluded that quantum Hamiltonian

FIG. 1. () A trivial example for a Hamiltonian ratchet is a ratchets can work if classical and quantum systems are both
periodic potgntial that is moving at a constant velocigy> 0 such spatially periodic such that the quantum system has a band
that V(x,t)=V(x-vgt). The system is integrable, since it is time spectrum. Detailing our findings, we will show in Sec. Ill B
independent in the comoving reference frame. Despite thghat quantum transport relies on the semiclassical correspon-
conveyor-belt construction it is also unbiased, since the averaggence between the dynamics of wave packets and that of
force in a periodic potential is always zer®) shows the depen-  c|assical distributions in phase space: As long as a wave
dence of the asymptotic mean velocityon the initial velocityvq packet, started in the chaotic region of the phase space, say,
under the assumption that the potential is nonzero only in negligiblyfemains predominantly restricted to this region, it will be
small intervals. Particles with initial velocity close tg, namely, transported with the classical mean chaotic velocity. Such
for M(ug=v)?/2<Vina, are trapped inside one well of the poten- quantum-classical correspondence can be attributed to the
ti_al ap(_j_have an _asymptotic velocifi=vg independent of the pre- existence of different types of bands in the spectrum, with
cise initial conditions. eigenfunctions concentrating semiclassically on different in-

depend on the precise initial conditions as long as they ar¥ariant sets of classical phase space. Since this mechanism
restricted to some finite phase-space region. For the purpo§gucially depends on classical phase-space structures, it can-
of the present paper we regard this property as the definitioROt be captured using a singler few-)band picture. There-
of a Hamiltonian ratchet. fore our results are not at variance with the absence of trans-
Even with this restriction it is possible to construct caseg?Ort demonstrated within such an approximatja6,16.
one would qualify as trivial realizations of directed transport; However, also in the semiclassical regime, nonclassical
In the integrable system sketched in Fig. 1, for exampleProcesses like tunneling are possible which allow transitions
transport appears to be achieved by a mere change of framlée_:twgen invariant sets of F:Iassmal pha.se.space. In' Sec. 'III C
For the sake of simplicity of the definition we do not attemptWe Will address the question of why this is compatible with
to formally exclude such cases. In what follows, however,duantum transport unlimited in time. Only when the exact
we concentrate on extended systems with a mixed phagieriodicity of the quantum system is destroyed do the eigen-

space where one has to understand the interplay betwed@nctions governing the long-time dynamics ignore classical
regular and chaotic transport. phase-space structur¢®l] such that ratchet transport be-

Unless symmetries of the driving potential preverftiL comes a transient phenomenon. We shall deal with this case

Hamiltonian ratchets as defined above lead, without averag® Sec- D _ _ _ _
force, to a nonzero mean velocity of an ensemble of particles !N Our conclusiongSec. IV) we discuss in particular vari-
which were initially at rest. The same applies also to the®US Ways of breaking the translation invariance of Hamil-
ratchets described ifL3,14), although there is no velocity tonian ratchets and how this affects transport.
locking and ensembles of particles do spread ballistically.
These systems are based on a mechanism that is different
from the models discussed [1—5,15-17 and the present ll. CLASSICAL HAMILTONIAN RATCHETS
paper and we will not consider them here. A. The Hamiltonian of the extended system

For Hamiltonian ratchets under the influence of an aver-
age force we show in Sec. Il F that uphill regular transportis We consider Hamiltonian systems in one dimension
possible. In contrast, even an infinitesimal average force dewhich areperiodic and unbiasedin the sense specified be-
stroys the chaotic drift and leads to downhill acceleration. low. The Hamiltonian is of the form

026228-2



DIRECTED CHAOTIC TRANSPORT IN HAMILTONIAN.... PHYSICAL REVIEW E 71, 026228(2005

H(p.x,t) = T(p) + V(x,1), 1

where x and p are the canonically conjugate position and
momentum and(p) andV(x,t) denote kinetic and potential
energy, respectively.

We require that thelynamicsbe invariant under integer
translations of space or time and use dimensionless variables
in which both periods are unitj22], i.e., we assume the
following property: For any trajectory(t) with initial con-
ditions x(tp) =Xg, p(tg) =Py and any other trajectorg(t) with
X(tg+n)=Xy+m, P(tg+n)=py, we haveXx(t+n)=x(t)+m for
all t.

In the simplest case this is realized Byp)=p?/2 and a
spatially and temporally periodic potential

V(x,t+1) =V(x+ 1) =V(x1), (2)

but this is not a necessary condition: If the potential contains
an additional termf(t)x we haveV’(x+1,t)=V’'(x,t) only,
whereV'=dV/dx. Nevertheless, discrete translation invari-
ance may be satisfied for the dynamics; see Sec. Il F for an FIG. 2. Typical stroboscopic Poincaré section0 for a Hamil-
example. _ _ tonian ratchet with noncontractible KAM tori, main chaotic sea, and
We shall refer to the system as unbiased, if the for@e — reqyiar islands. The lettered rectangular regions support initial dis-
averaged over space and time vanishes, tributions of particles for which the corresponding velocity distri-

1 1 butions are shown in Fig. 3 below.
f dxf dtV'(x,t)=0. (3)
0 0

of section, relevant for transport in Hamiltonian ratchets. For
In Sec. Il G we will also consider systems where the kineticthe moment we restrict the discussion to smooth potentials in
energy is a periodic function gf such asT(p)=cos 2mp for the sense of the KoImogorov—ArnoI’d-Mos.eKA.M) theo-
electrons in a Bloch band. As we shall see, such systems af§M [24] and take as an example the Hamiltonian

always unbiased. p?
H(p,xt) = 5t Vo(X) +xVi(t) 5

B. The phase space of a unit cell with
Instead of the extended system represented byBgthe
discrete translation invariance allows us to consider an aux-
iliary system restricted to a singlait cell by imposing pe-
riodic boundary conditions at=1, t=1. Since in this paper
both representations appear in parallel, we use different syn‘?’-nd
bols é=xmod 1 andr=t mod 1 for the cyclic variables of -
the unit cell. Vi(x) =- —6[4.6 si2mt) + 2.76 sif4at + 0.7)]. (7)
It is a standard technique for driven systef@8] to treat 5.7

time like a spatial coordinate such that a one-dimensionafhjs corresponds to the parameter(@tof Fig. 1 in Ref.[1]

time-dependent system is mapped to a formally timeyynen the spatial and the temporal period are scaled to unity.
independent problem in two dimensions. For the unit cell the e stroboscopic Poincaré section for this model is shown

Vo(x) = %&Siﬂ(wa) +0.3siM4mx+0.4)] (6)

Hamiltonian obtained in this way is in Fig. 2. We can distinguish the following three types of
H(EP,7,E) = T(p) + V(&7 + &, (4) motion, each corresponding to a characteristic signature in
phase space and transport.
where £ is canonically conjugate tor. This ensurest (i) At high kinetic energies the ratchet potential can be

=dHI0E=1. Since’H is a conserved quantity,&tt) can be  considered a small perturbation acting on a free particle. For
interpreted as the energyH that the system has gained from this integrable limit the trajectories are confined to invariant
the driving up to time. Moreover, it becomes clear that the surfaces in phase space that have the topology of a torus.
dynamics is restricted to a three-dimensional “energy shellThese tori are labeled by the conserved value of the momen-
‘H=const, which is spanned by the variablep, andr (£is  tum p and parametrized by the cyclic variablésind 7. In

a function of these three variables and the constant the (&,p) plane of the stroboscopic Poincaré section the tori
The dimensionality can be reduced further by consideringvould consequently appear as horizontal lines.
Poincaré surfaces of section at some constamhich elimi- The KAM theorem predicts the fate of a torus under a

nates the trivial flow in the- direction. In the following, we  small perturbation. It depends on whethenitsding num-
shall discuss the main features of such stroboscopic surfacég&r w is rational or not. The winding number is the ratio
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between the angular velocities along the two independerdample, any regular torus in the three-dimensional phase
cyclic coordinates spanning the torus. In the present casspace of the unit cell is invariant under the dynamics. Tra-
one of these coordinates is the timand the corresponding jectories initialized on the torus do not leave it, and vice
angular velocity is unity by definition. For the other coordi- versa. This invariant two-dimensional surface separates the
nateé, the angular velocity on the torus is equal to the transtemaining phase space into two invariant sets of nonzero
port velocity in the extended system, measured in spatial unineasure. Moreover, any region in phase space confined by a
cells per time period, so that=v. number of tori is an invariant set of the dynamics. In particu-
Almost all tori have irrational winding numbers and, ac- lar, this applies to the chaotic sea, which is bounded from
cording to the KAM theorem, most of them survive an in- below and above by two noncontractible KAM tori and by
finitesimal perturbation. This is visible in Fig. 2 at higy ~ the outermost tori of the embedded regular islands.
where we observe lines in the stroboscopic Poincaré section For our purpose the limitation of chaotic trajectories to a
which extend across the unit cell. Although the lines arecompact region of phase space will be crucial. In the ex-
deformed by the potential they represent intact tori of requlaample discussed above this is a consequence of the KAM
motion with irrational winding numbeftransport velocity. ~ scenario. In systems where the KAM theorem is not valid
Motion proceeds on these tori in the initial direction, without our theory applies as long as there is another mechanism
turning points. As these tori cannot be continuously condeading to a compact chaotic phase-space component. An
tracted to a point we will call themoncontractible example of this type will be discussed in Sec. Il G.

(i) Tori with rational winding number o
C. Velocity distribution

W=, ®) Although the systend) is restricted to a single unit cell,

v, i integer, which comprise a set of measure zero, ardt contains the complete information about transport in the
destroyed under an infinitesimal perturbation. Details of thisextended systerft). The velocityv=dH/dp=T'(p) along a
effect are described by the Poincaré Birkhoff theof@d.  trajectory is the same in both cases provided the initial con-
Together with a small neighborhood, a rational torus decayglitions are equivalent, i.e§,=x,mod 1 att=0. Therefore
to a chaotic layer embedding new tori of regular motion.the velocity is the appropriate quantity to connect transport
These tori have a different topology, however: They are conin the extended system to the unit cell and we describe trans-
tractible and appear as a set pf regular islands in the port in terms of the velocity distribution for an ensemble of
stroboscopic Poincaré section. The respective centers of tigrticles. An ensemble is specified by a normalized initial
islands are formed by a single elliptic periodic orbit with distribution po(&,Po, 7o) in the phase-space unit cell. The
period u, i.e., this orbit hag, distinct intersections with the variabler, is part of the initial conditions since it matters at
stroboscopic Poincaré section before it starts repeatingyhich phase of the driving force a trajectory was started. It
shifted by », unit cells in the extended space. In Fig. 2, we can indeed be physically meaningful to consider ensembles
therefore observe chains of regular islands which are sequefer which 7, is not sharp, for example to model a situation
tially traversed by a trajectory. The average velocity of thewhere particles continuously enter the system.
central periodic orbit and of all trajectories inside the island For any ensemblg, and timet we define the time-
corresponds to the rational winding numbsrw of the de-  averaged velocity distribution as
stroyed torus. Iv # 0 we speak of dransporting island 1t +o0 1 1

. (iii) The chaotic regions s.u.rrou.ndln.g the |s_Ian_d chalns at Pot0) = _f dt’f dpof dfoJ d7000( €0 Por 70)
high |p| are too small to be visible in Fig. 2. With increasing tJo o 0 0
perturbation, however, the chaotic regions grow and may X 8w - T'( ) 9
coalesce. In the vicinity op=0 the effective perturbation is Peiéopomo

strongest. As a result a larghaotic seadevelops. With in-  ith the normalizationfdv P(v)=1. If we consider an en-
creasing resolution we find more and more islands embeddegmple in the extended system, initially localizedxat0,
in this sea and more and more chains of transporting islandgen at a later time its spatial distribution will be given in
interrupting the strips where the intact KAM tori reside. terms of the velocity distribution bm(x):t_lppo,t(X/t)- For

Such islands need not be remnants of ra.tional tori in thei’ong times the center of mass moves with the mean velocity
undriven system—they can appear and disappear at some

finite value of the driving potential as a result of bifurcations _ -
of periodic orbits. Still, their transport velocity must also be Upo = f B dv vP, «(v), (10
given by a rational winding number.

Conversely, we find more and more small chaotic regionsvhere the existence dfpo,w(v):Iimt_mPpO,t(v) is assumed.
located within the regular islands. Since they are confined to The behavior of the velocity distribution is qualitatively
the phase-space region demarked by the outermost intadifferent for initial distributionsp, which are restricted to
torus encircling the island, they share the same average velifferent invariant sets of the phase space. This is demon-
locity v=w, wherew is the winding number of the island.  strated in Fig. 3. We used as initial distributions the charac-

The phase-space regions enumerated above are most adristic functionsy, .4 Of the rectangles marked in Fig. 2,
equately discussed in terms iovariant setsa subset of the approximated by a large number of trajectories with initial
phase space invariaas a wholeunder the dynamics, irre- conditions distributed randomly inside the corresponding re-
spective of any reshuffling possibly occurring inside. For ex-gion.
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5 ; goes to zero as— . We can explain this behavior using the

a . 1=10,000 concept of ergodicity. Ergodicity means that for any function

defined on phase space and for almost all trajectories the

time average along the trajectory coincides with an average

over the accessible phase space. It is usually assumed that

3l ; ] this property applies to the chaotic components of systems
- with a mixed phase space, although proofs of such a state-

: ment can be given only in exceptional situatid2®]. For

2| ; our purpose we can use the velodity T'(p) as the function

on phase space and obtain for any nonsingular initial distri-

bution inside the chaotic sea, such as the rectangular region

=100 of Fig. 2,

P o) = 8 —vep) (12

(a) v with the mean chaotic velocity

|
.y
iy

ven=Var f dr déd, T'(p). (13
ch

¢ b The phase-space integral extends here over the whole chaotic
20 ] sea of the spatiotemporal unit cell, abigh=/dr dé dp de-
notes its volume.
15 ] In the following section we shall discuss a method to
evaluate Eq(13). For the moment it suffices to say that, in
the absence of specific symmetries, there is no general reason
to expect that the chaotic velocity predicted by this equation
d is zero. Therefore, also the chaotic sea provides an example
5 ] for Hamiltonian ratchet transport.
For both regular islands and chaotic components the
0—r 05 0 asymptotic velocity distribution is & function that does not
(b) v depend on the precise location of the initial phase-space dis-
tribution within the invariant set. The velocity distribution
FIG. 3. Distribution of time-averaged velocities, E@), for  obtained from a region with surviving noncontractible KAM
four different initial distributionsa—d (see Flg 2 The chaotic dis- tori shows a fundamenta”y different beha\/ior, ana]ogous to
tributiona was sampled by 10 000 trajectories, while for each of thethe case of a free particle: it maintains a finite width for
regular distributions—d only 100 trajectories were used. For each _, » gnd a complicated internal structufgistribution d in
trajectory the velocity was averaged upttol00 and the resulting Fig. 3. Moreover, the detailed properties of the asymptotic
d?str?butions are displayed with solid Iine_sd. Fora andd also the velocity distribution depend on the precise shape and loca-
distributions att=10 000 are showtbold lines. tion of the initial ensemble. Hence, according to our defini-

tion, noncontractible tori do not show ratchetlike transport.
In the simplest casey has support inside a regular island

(distributionsb andc in Fig. 3). According to the last section, D. Transport for invariant sets and sum rule
the average velocity of all trajectories inside an island is

equal to the winding numbew of the island. Consequently ~ There is an interesting reformulation of E@.3) which
we have allows us to calculate the chaotic mean velocity in terms of

regular trajectories only3]. For any subseM of the unit
Ppo=(v) = 6lv —w) (1) cell, we define its contribution téransport 7,,, as phase-
space volume times average velocity,

P(v)

107

and observe sharp peaks in Fig. 3 distributibrasdc whose

width is within the bin size of the histogram already tat

=100. Figure 3 distribution is an example for a transporting I =Vvom = f dédpdrxm(é&p, DT (p), (14

island,w = 0. Any distributionp, initialized inside this island

will be transported ballistically with velocitw=-1. At the  where yy(¢,p,7) is the characteristic function dfl. Note

same time the width of the distribution does not grow ballis-that in this definitionM is not necessarily an invariant set.

tically. As stated in the Introduction, we consider this behav-However, if M denotes either the chaotic sea or a regular

ior as the defining property of a Hamiltonian ratchet. island, the phase-space-averaged velogjjycan be identi-
For an ensemble initialized in the chaotic $€&y. 3 dis- fied with the asymptotic mean velocity of almost all trajec-

tribution a) the situation is similar. Although here the veloc- tories inside the invariant set, as described in the previous

ity distribution shows an appreciable width at finite times,section.

the comparison af=100 and 10 000 suggests that this width ~ Transport has to be distinguished from the familiar con-
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cept of current which refers to the probability flow that defining the subseé¥l. This applies tanysubset of the phase
passes per unit time through a surface dividing phase spacgpace confined by two noncontractible tori.

Here we are interested in transport along thelirection. On the other hand, according to E49) the transport of
Therefore we consider the current at a paintThe value of  the stochastic layer is equal to the contributions from the
the current depends on the positi§nand the timery where  invariant manifolds it comprises

it is measured. In terms of the densjiy(&, p), it is given as

o0 (M= (T =Verven+ E Vivi. (21)
1(é0,70) = f dpp;(&,P)T'(p). (15) '
_ ) ~ Equation(21) can be used to predict the chaotic transport
In order to relate this current to the transport of an invariant,e|ocity. In practice this works as follows.
setM, Eq. (14), we substitute the density of the invariant (i) |n the stroboscopic Poincaré section we determine the

measure location of the limiting KAM torip,, and the location of the
(&P, limiting tori of all major regular islands together with their
pA&p) = MA— (16)  winding numbersw;.
M, 7

(i) In order to determine the phase-space volumes enter-

WhereAM denotes the area ofl in a Stroboscopic Poincaré |ng Eq (21) it is in fact sufficient to know the areas in the
section. Integration of the density over one period of theStroboscopic Poincaré section. The Liouville theorem applied
driving leads to the time-averaged currenthfat &, to the time-dependent Hamiltonian E@) [24] ensures that
- - Zych an arlea Iis con.s;:‘.rver(]j b)r/1 the dynam]icci. Th_e thlrle_e—
T _ L , imensional volume within the phase space of the unit cell is
(&o) = A fo de_w dp Xu(&0,P, DT (P), (7 simply the area at any given moment in time, multiplied by
the temporal period’=AX 1. Areas in the Poincaré section
where we have used the conservation of phase-space areagfe determined by approximating the corresponding invariant
Hamiltonian systemsAy ,=Ay. An additional integration manifold by a polygon with corners obtained from running a
over, yields the relation between the current in theirec-  trajectory on the outermost torus. Numerically, an approxi-
tion and transport mation to this torus can be found by zooming into the
—A T Poincaré section.
Tu=Aulw- (18) (iii ) The kinetic-energy averagés), over the bounding
Here we have used that the time-averaged current is indepeKAM tori are obtained by sampling a torus with a long tra-
dent of the positiorgy, as implied by the continuity equation jectory, and determining the integrals EQ0O) numerically.
for the invariant measure. Note that for this reason we couldNote that this is not equivalent to a time average over such a
in principle define transport also without tieéntegration. trajectory as the invariant density on the torus is not constant.
By choosing the density as in EL6) and weighting the (iv) Putting all the information together we find
contribution of each invariant sé¥l by its areaA,,, we

achieve that the resulting quantity, transport, is additive. (M= (TH - > AW,

Namely, with the definition(14), we have for the union of i

two or more disjoint sets, i.e., favl=U;M;, with M; N M; Uch= “Sa : (22
=@ for all i # |, Avayer = A

TM:;TMF (19 Compared to the above procedure, the straightforward

method of determining the chaotic transport velocity by run-
We will apply thissum rulefor transport to the layer in phase ning a very long trajectory has the disadvantage that its ac-
space which contains the chaotic sea and the embedded regiirracy is hard to control. The trajectory must be long enough
lar islands. It is bounded from below and above by twoto sample the chaotic phase-space component ergodically,
KAM tori. For simplicity we assume that they can be repre-and there is no way to tell from a single trajectory whether

sented by two functionp,, (¢, 7). We find from Eq.(14) this has been achieved with sufficient accuracy. The reason is
1 1 p(E) that the chaotic component typically contains partial barriers
Zayer:f dgf dTJ dp T'(p) (cantor), which may appear closed in a simulation over fi-
0 0 P& nite time. The error made by ignoring the phase-space region
1 1 behind the partial barrier can in principle be arbitrarily large.
:f dgf dAdT(py(& D) - T(p(€,7)] Also the converse error is possible: For long simulations the
0 0 accumulating numerical inaccuracy may drive a chaotic tra-

=(T), = (T) (20) jec_tory beyon(_j an intact KAM torus. By usi_ng a stroboscopic

u b Poincaré section such errors are substantially reduced. In the
i.e., the transport of the layer is simply given by the kineticpicture obtained from many relatively short trajectories, sam-
energy T, averaged over the two bounding KAM tori. In pling the entire phase space, one can judge if there are two
short, since the underlying phase-space distributiomearby chaotic regions which may actually form a single
xu(€,p, 7 is flat, the transport is determined by the outline invariant set. It is then sufficient to increase the resolution
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selectively in a small portion of the phase space, which is 20 &) 01 o )
possible with relatively small computational effort. -

:0 vl

=10

E. Chaotic transport and Lévy walks

Equation(22) shows that the basic mechanism underlying

chaotic ratchet transport is the existence of KAM tori and =

regular islands which prevent a chaotic trajectory from sam- o W%m
pling the whole classical phase space. Unless there are spe- 0 K
cial symmetries, the velocity average over the chaotic sea is 0
generically nonzero and it is determined solely by the bound- = t=10

aries of this invariant set. Besides ergodicity, no reference to &

any details of the dynamics within the chaotic set is needed
to explain and quantitatively predict the observed asymptotic
chaotic transport velocity.

Nevertheless substructures inside the chaotic component
of the phase space in general do exist and leave their hall-
mark in transport properties. Lévy walks, in particular, have
attracted some attention in the context of Hamiltonian ratch-
ets[1,4,5. These are the episodes when a chaotic trajectory
is trapped in the vicinity of a transporting island, close to the
hierarchical structure of smaller and smaller islands and sur-
rounding cantori. Such hierarchical regions are virtually un-
avoidable in a mixed phase spaéer remarkable exceptions
see[25,26]). In the context of ratchets they were termed
“ballistic channels”[4,5] and are frequently located in the
vicinity of the KAM tori confining the chaotic sea from be-
low and above, i.e., in regions of relatively high velocity.

Therefore Lévy walks are easily observed in numerical trans- v" ©
port experiments. Some care must be taken to avoid the i

wrong conclusion that ballistic channels and Lévy walks are

necessary for the existence of substantial chaotic transport or 0 . 10 10

can completely account for it.

To study this question in some detail, let us start fromthe 5 4 (a) Stroboscopic Poincaré sectionzat0 for the system

sum rule Eq(19) and decompose the chaotic transport into,¢ £ (24). (b) For an initial distributionpy ~ yep the distribution of
contributions from disjunct subsets of the chaotic $8a {ime-averaged velocities is shown at various tiness t— it

=U;C;. We haveVeen=2Vjvj andVep=2,V such that evolves to a narrow peak around the asymptotic mean velocity
(dashed line fot=1CP). (c) From all distributions shown iib) the
2 Vivj average velocityy is computed after the contributions from the
Ueh= ' ) (23) ballistic channels have been removed by restrictit(g) to the
2 VJ interval —28<v < +18. The resulting value&lots are for all times

j close to the asymptotic mean velocigashed

Because of ergodicity inside the chaotic component the

phase-space volumég in Eg. (23) can be replaced by the

fraction of time a typical chaotic trajectory spends inside

subsetj or, equivalently, by the probability to enter subget

times the average survival time in it. Doing so we immedi- + (277)2)([2 cog2mt) - 4 co<4m+ f)}

ately arrive at a formula similar in spirit to E¢B) of Ref.[4] 2

or Eq. (6) of Ref.[5]. At the same time it is still exact and (24)

does not depend on the character of the subsetsed to

subdivide the chaotic region. As in Ref4,5], this decom- and the stroboscopic Poincaré sectiéiig. 4(a] shows the

position can, e.g., consist of a few prominent ballistic chantypical features discussed in Sec. Il B. The velocity distribu-

nels and some remaining chaotic “bulk” region. Our maintion of the chaotic component is shown in Figb¥for vari-

point here is that in general it isot possible to approximate ous times. In contrast to Fig. 3 distributicrwe have chosen

this remainder by an undirected and purely diffusive dynamhere an ensemble of initial conditiong~ x., uniformly

ics, i.e., to seb;=0 for the corresponding subset in Eg3).  covering the entire chaotic sea. Numerically this has been
For this purpose we will follow the analysis suggested inachieved by relying on ergodicity. We ran a single long cha-

Refs.[4,5] but apply it to a model with different parameter otic trajectoryx(t) (0<t<4x10) and usedx(t') with t’

values. The Hamiltonian is =0,1,2,.. as the initial conditions of the ensemble. For

2
H(p,x,t) = % — 27 coq27X)
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each such initial condition,=[x(t’ +t)—-x(t")]/t is the veloc-

ity averaged over a time spanFor fixedt the probability
distributionP(v;) is shown in Fig. 4b). It is equivalent to the
propagator used in Ref5] for visualizing internal details of
the chaotic dynamics. Peaks in the propagator can be inter-
preted as signatures of partial transport barriers within the
chaotic sea. They are visible as long as the paranetethe
velocity distribution is smaller than the time scale for cross-
ing the barrier. As expected, for long timés>10°) only a
narrow peak survives at a velocity which is in good agree-
ment with the prediction of the sum ruléashed line foit
=10°).

Since the shape of the velocity distribution depends
strongly on time, any definition of ballistic channels and the
corresponding subdivision of the chaotic invariant set must
be highly arbitrary. We single out the most prominent trans-
porting islands which are visible in Fig.(@ close to the
lower and the upper boundaries of the chaotic sea. They have
winding numbersv_~ 30 andw, ~ 20, respectively. In these
regions we observe particularly sharp peaks in the velocity
distribution for t=<10® which are signatures of the corre-

sponding Lévy walks. Following Ref5] we continue by 500

averaging the velocity distribution over a region that ex- T
cludes all such ballistic channe[s-28<v< +18 for the
solid line in Fig. 4c); note that thig interval is defined with X /

respect to the average velocity and therefore is not com-
pletely inside the chaotic layer in the Poincaré section shown 0 40 80 120 160
in Fig. 4@)]. The result represents the contribution from the
bulk of the chaotic sea. It is definitely nonzero and in fact FIG. 5. () Stroboscopic Poincaré section for the model &.

quite close to the asymptotic transport velodiiashed ling 4 i Fig. 2. On top two trajectories of a system with the additional
irrespective of the time scale and the precise cutoff Va'“%otentialvbia {x)=cx with c=0.13 are shown. One trajectofbig
used. In other words, the average chaotic transport in thiaotg was started ap=10, i.e., in a phase-space region which is in
example is mainly due to the bulk region while the ballistic the original system filled by noncontractible regular tori. In the
channels and their Lévy walks contribute small correctionsyresence of the bias such tori are absent and the trajectory keeps
only. losing momentum without bounds. In the extended system this tra-
This shows that only the invariant sets, as featured in thgectory is similar to a parabolgdashed line inb)]. The other tra-
sum rule Eq.(19), provide an appropriate concept for the jectory [thick line in (a) and (b)] is part of a regular island with

description of the asymptotic directed transport. winding numbemw=1, i.e., in the extended system this trajectory is
) transporting uphill without losing momentum. The inset @J
F. Biased ratchets shows the shape of the regular island at different magnitudes of the

against an external force? As explained in Sec. Il A, a conhegative or zero winding number do exist in the biased ratiwit

stant force does not destroy the periodicity of the dynamics?ho""r)'

and we can _stiII resort to a unit _ceII _to und_erstgnd t_he transpositive winding numbers. We observe that for0.13 the
port properties. The key question is, which invariant set§nomentum of this trajectory is decreasing without bounds
may survive in presence of an additional potenWighdX)  under the influence of the constant bias force, as naive ex-
=cx. In Fig. 5@ we compare two trajectories f@=0.13to  pectation suggests. Only in a short time interval, when
the familiar phase-space portrait @0 (Fig. 2). One of =0, the driving potential has a relevant influence on this
them was initialized on a large transporting island with wind-trajectory. For long times it behaves essentially like a free
ing numbemw=1. Clearly, this island is still present although particle accelerated by the bias potential. Therefdtg for
it is distorted and shifted in position. The winding number ofthis trajectory is approximately parabofidashed line in Fig.
the island is conserved since it is a topological quantity re5(b)].
stricted to rationales. Hence all trajectories inside the islands From the presence of this single accelerated trajectory we
have asymptotic mean velocily=1 and we may conclude can already conclude that no regular KAM tori survive in the
that Hamiltonian ratchets can transport uphill. This is con-biased systenfat least not in the phase-space region dis-
firmed by the full line in Fig. B), which shows position vs played in Fig. 3, since these would represent impenetrable
time for the same trajectory. barriers to transport in thp direction. Note that the KAM
The other trajectory was initialized in a phase-space retheorem does not apply to this situation: A constant force
gion which forc=0 contains noncontractible KAM tori with does not represent a smooth perturbation for the unit cell
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since the potential is not periodic. In fact there is a simpleratchets. For this purpose one has to modify the phase space
argument suggesting that an arbitrary small mean force desf the unit cell such that transporting islands arise and the
stroys all noncontractible KAM tori. Assume that there is asymmetryx— —x, p— —p of the kicked rotor is destroyed.
KAM torus of the formp(&, 7) periodic in ¢ and 7. Consider In fact transporting islands appear already in the standard
its average momentum at some given moment in time, kicked rotor at kicking strengthi€ = 277m. They are referred
1 to as “accelerator mode§27] and leave traces in the dynam-
== ics which were also experimentally observizB]. In the
P(7) fo dg p(é, 7). (25 kicked rotor these accelerator modes always come in pairs
transporting in opposite directions and therefore do not lead

As we show by a straightforward calculation in Appendix A g transport in the chaotic sea. However, this symmetry can
the increment op after one temporal period is given by pe destroyed, e.g., by applying more than a single kick per

1 period or by using asymmetric potentials in E27). It is not
p(r+ 1) -p(n) = —f dedr V(& 7). (26)  expected that the details of these manipulations will be of
0 importance for the resulting chaotic transport since, as we

have shown in the previous sections, the latter is determined

Clearly, this increment must vanish for an invariant KAM .
by the underlying phase-space structure only.

torus. However, the right-hand sid@HS) of Eq. (26) is not . ]
zero for a biased system with a mean force. We conclude thasttrIn the remainder of this paper we therefore study an ab-

no extended KAM tori survive and that therefore the chaoticv act modeII |r: tge f'(t)r:m ?f Efc(28). Tr][e functlonts_T(IIJ) and .
sea is no compact invariant set anymore. Hence an arbitrarily ) &re selected without reference to any particular experi-
ental setup and only guided by the desire to have a simple

small bias potential will destroy the chaotic ratchet transpor . Lo
in models like Eq.(5) while uphill transport can be realized Phase-space structure with a large transporting island. We

by preparing initial conditions on regular islands of the phasé&00S€
space. V(x) = (x mod1 — 1/3%/2,

G. A minimal model T(p) = |p| + 3 sin27p)/(472). (30)

According to the previous sections, the decisive propertyrhe resulting map
of a Hamiltonian ratchet is an asymmetric mixed phase

space. Based on this insight we can now construct minimal Pn+1 = Pn = (X, modd + 1/2,
models for Hamiltonian ratchets which have this property
and are otherwise as simple as possible. Probably the sim- Xnt1 = Xn T SQM(Ppe1) + 3 COK27Pp4 1)/ 27 (31

plest type of model with a mixed phase space are are
preserving maps generated from kicked one-dimension
Hamiltonians of the form

j}% considered on a cylinder with transport along the extended

X axis while p=p+1 is here a cyclic variable that can be

represented bp&[-1/2,+1/2. If the map is restricted to

H(x,p,t) = T(p) + V(X >, 8(t—n). (27)  one unit cellx— £=x mod1 we obtain the phase-space por-
n trait shown in Fig. €). It shows one large regular island

around the stable fixed poigg=1/2, py=—1/4 with winding

In'gegrating the 'equations' pf motion over one pgr'iod of thenumben/voz—l. Due to the ternp| in T(p) the phase space
driving we obtain an explicit map expressing positigrand has no reflection symmetry aroume=0 and also no other

tmhomelntun*;t))n |fmmetf]||ately bedf_ore It(hekk'Ck denin terms of momentum-inverting symmetry such that there is no equiva-
€ values before the preceding kic lent island transporting in the positive direction.

Pre1 = Pn= V' (X)), Xne1=Xn+ T (Ppey)- (28) There are also no extended regular tori and the whole unit
. . ) cell must be considered as the analog of the compact stochas-
The most prominent example is the kicked rotor tic layer in the continuously driven models which we consid-
p? K ered in the previous sections. Consequently the LHS of the
T(p) = PY V(x) = o coq2mX), (299  sum rule Eq.(21) vanishes, 0%¢,Vent+(=1)Veq In other

words the total transport, averaged over the whole available
one of the best-studied paradigms of Hamiltonian cha@s phase space, vanishes for this system which confirms that it

The phase space of this model is periodic with period 1 botis unbiased. A considerable simplification results from the
in x and inp. Therefore one can define a compact unit cellfact that here the chaotic transport velocity can be computed

with areaAx Ap=1. from the relative phase-space volume of the single regular
The kicked rotor found an important experimental realiza-Island Areg=1-A¢p, alone,
tion in the dynamics of cold atoms in pulsed laser fields
y b Uch= Areg{(l _Areg)- (32

[28,29. In this experimental setup the momentum instead of

the position is the experimentally accessible quantity and onerom the Poincaré section Fig. (& we find Aeg

is therefore interested in transport along the momentum di=0.117+0.001; thus,,=0.133+0.001. This is in very good
rection. Apart from this purely formal difference, atom optics agreement withy.,=0.1344+0.0003 obtained directly from
experiments promise to be ideal realizations of Hamiltoniarthe spatial distribution of Htrajectories after X 10 kicks.
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V2 . however, now becomes discrete, measuring time in units of

the period of the driving. It is generated by the unitary evo-
lution operator over one period,

sl
Ut+1,0)= “Texp<— L f dt ﬁ(t)) , (33)
h 0

where7 effects time ordering. The computation of this Flo-
quet operator is simplified considerablyHf(t) is a kicked
Hamiltonian as in Eq(27). Then the time evolution from
time t=m-¢ immediately before the kickn to time t=m
+1-¢ immediately before the following kick can be ex-
pressed in terms of(p) andV(x) as a product

20 L‘J = g TP/ hgmIVRIh (34)

of two operators which are diagonal in the position or the
momentum representation, respectively. The time evolution
of a state is obtained by successive multiplications by phase
factors and fast Fourier transforms effecting a basis change.
An additional simplification results if we considgr as a
cyclic variable p=p+1, as is the case with the minimal
ratchet model Eq31) to which our numerical results will be
restricted. In this case the wave function is periodip ivith
Y(p+1)=y{p) and consequently the conjugate variakles
restricted to the discrete valugs=nh. Here,h denotes the
dimensionless ratio of Planck’s constant to the phase-space
area of the classical unit cell which we set to unity in Eq.
(31). It is a well-known peculiarity of models with this prop-
erty that the periodicity of the classical potenth{x+ 1)
=V(x) [or at leastV’(x+1)=V'(x) in the case of our minimal

P(v)

FIG. 6. (a) Poincaré sectiom vs ¢ of a unit cell for the map
given by Eq.(31). (b) Velocity distributionP(v) of 10* trajectories
started at random on the lipg=0, x€[0,1) in the chaotic sea of
the system and iterated until 1@nd 10, respectively.

Figure 6b) shows the convergence of the chaotic velocity

distribution to aé function concentrated at this value, in . . -
model does not necessarily lead to a spatially periodic Flo-

accordance with Eq11). : A
We would like to stress again that the directed chaoticquet operator. The reason is that the potential is now re-

transport in this ratchet model is a consequence of the phasgt-mtﬁ.d to dd|scire.:cethvalu§¢n:\((>;n) ;V(r.\thr: 3nd _p\?rlocri:p ':]y
space structure and cannot be explained by the asymmetﬂi% a? 'er\llﬁl_ I?/In y";h erethls gntln eg/l rV|_\|" “GERM”NW Ic ;
kinetic-energy function alone. We have verified this fact by'mp'es. =M with another integelvi. Hencen=Rn/iN must
repeating the analysis for a larger potenti&i(%. Then the be rational. In contrast, in periodic systems with infinite

phase space is completely chaotic, yet despite the asymm&hase—spacg vqlume SUCh. as B, the Floguet opera'for IS
ric function T(p) no transport is observed Spatially periodic irrespective of the value of Planck’s con-

stant. In the following sections we shall use valhesl/N to
ll. QUANTUM RATCHETS ensure that the quantum system has the same spatial period-
. S : . icity as the classical model. Only in the last Sec. Ill D do we
We now turn to the investigation of quantized Hamil- -,nqjqer modifications of our results for irrational values of
tonian ratchets, €., driven ong—dmenspngl Ham_lltonlann' They are to be interpreted as a spatial disorder that does
quantum systems which are classically periodic both in Spac affect the classical phase-space structure but destroys the
and in time. We restrict attention to systems in which theperfect periodicity of the corresponding quantum system.
phase-space vqume_of a unit cellis finite and phase space is 5 4o, ple periodicity, in both space and time, requires to
composed of a cha0t|c.sga with one or more gmbedded €O mbine the corresponding representations of quantum me-
lar islands, as in the minimal ratchet model discussed abov%‘nanics appropriate for these symmetries, i.e., Bloch and

Th|.s re§tr|c'§|9n leads to a finite Hllbgrt—space dlmenS|onF|Oquet theory, respectively. The eigenvalue equation
which simplifies the numerical calculations. Moreover, we

have seen that the dynamical processes relevant for transport |t + 1)) = 0| b (1) = €727 (1)) (35)
are restricted anyway to the compact chaotic layer of the unit

cell. We therefore expect models with finite Hilbert-spacedefines Floquet states|¢,) and quasienergiese,E[0,1)
dimension to capture also the essential features of quantizéd0]. For the systems considered herds a discrete index

ratchet transport. l<sa<N.
) For the discrete spatial translation group there is a con-
A. Floquet operator and eigenstates tinuous set of representations parametrized by the quasimo-

For a system periodic in time, one can still construct amentumk&[0,1). In the simultaneous presence of temporal
dynamical group with a single timelike parameter, which,periodicity, the Bloch theorem now applies to Floquet states,
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bands: regular bands appear in the spectrum as straight lines
with slope de,/dk=-1, chaotic bands are fluctuating and
have on average a positive slope. In the subsequent section,
we are going to make this relation between bands and sub-
sets of the phase space more precise. We use it to establish a
sum rule for transport in quantum ratchets analogous to the
classical sum rule discussed in Sec. Il D.

P(v)

B. Semiclassical transport in terms of Floquet bands

1. Quantum sum rule

The basic relation expressing the velocity of a Floquet
state in terms of the quasienergy band to which it belongs is

-1 0 1

dea,k

Vak = {Pail0|dai) = (37

FIG. 7. (@) Quasienergy band spectrum of the minimal ratchet dk
model Eq.(31) ath™1=32. Regular bands appear as approximately - .
straight lines with negative slopé) The Husimi representation of In the present case of a periodically d“\fen system, the ex-
the Floquet eigenstates corresponding to points on these lines aggctation value of the velocity operatorT’(p) includes a
concentrated inside the regular islafw).Most other eigenfunctions time average over one period of the driving---))
spread over the entire chaotic sea but avoid the regular island. The fédt(---). The second member of Eq37) then follows
corresponding bands have strongly fluctuating slofssDistribu- from applying the Hellmann-Feynman theorem, which was
tion of band slopegvelocity expectation valugsat h™*=128. The proven for time-periodic systems [80].
sharp peak ab=-1 corresponds to the regular bands, the broader A wave packet localized on the scale of a single unit cell
peak to the chaotic bands. The velocity of the classically chaotiqr narrower corresponds to a nearly homogeneous distribu-

transport is marked by an arrow. tion in k. The corresponding mean velocity for a whole band
' a vanishes,
¢a,k(x + 1,t) = ezmkd)a,k(xat) (36) 1 d
(va)k=J dk—xk = o, (38)
so that both eigenstates and eigenphases carry a double index 0 dk

(a,k). The support of thé&loquet band spectrunin all cases o Lo .
considered here, consists of continuous lines in the ol 1S implied by the periodicity of the bands. Averaging also

dimensionalk, ) space: cf. Fig. @). Since the spectrum is over energy, i.e., summing over the bands, we fir_1d as veloc-
T P N . ity average over the total Hilbert space of the unit cell,
periodic with period 1 in bothe and k, these variables are
canonically conjugate to a pair of integefs,,m) which 1 de, ¢
measure position and time in units of the spatial and tempo- (0)e= 2 =) =0. (39)
. . X N\ dk /
ral periods, respectively. For this reason the band structure
and the time evolution of the spatial distribution are relatedEquation (39) can be considered the quantum-mechanical
by a double Fourier transformation, as we shall show in Seccounterpart of the classical sum rule for transport, 24).
[l B. Effectively, the quantum sum rule like the classical one re-
We have seen that the decisive property of classicafers to a finite subset of the phase space. Here, the cutoff is
Hamiltonian ratchets is the existence of invariant sets of théntroduced by the finite dimension of the basis used to span
phase space with different average velocities. Traces of théne Hilbert space of the unit cell in calculating the band
classically invariant sets are manifest in the quantum dynamspectrum.
ics only if the quantum uncertainty allows their resolution, The crucial step for this quantum sum rule is the averag-
i.e., if 2 is much smaller than the relevant phase-space struéng along a given band over the entire Brillouin zone, Eg.
tures. From here on we shall restrict our attention to thig38). In particular, this amounts to regarding all band cross-
semiclassical regime. Figure(& shows an example of a ings, however narrow, as avoided crossings iffere con-
Floguet band spectrum for a Hamiltonian ratchet, the minisidered a parameter with a fictitious time dependence, the
mal model(31). This system has two distinct invariant sets in quantum time evolution under a slow change kofvould
phase space, the chaotic sea and one transporting island eraspect avoided crossings in exactly this manner. Therefore
bedded in it. According to the semiclassical eigenfunctionthese bands are referred toadiabatic bandg34].
hypothesig 31,32 one expects that in the semiclassical re- It follows, conversely, that a finite mean velocity can be
gime almost all eigenfunctions condense on one of the inebtained if modified bands are constructed by connecting
variant phase-space sets. Figuréls) and 7c) show the Hu-  band segmentacrossall avoided crossings with a gap below
simi representationg33] of typical eigenstates. Indeed, one some threshold. Such bands determine the time evolution
of them is concentrated inside the regular island while theunder a fast change &fand accordingly are callediabatic
other populates the chaotic sea, avoiding the island. Assocj34]. They are not associated with a fixed band indeand
ated with these two types of eigenstates are two types dherefore need not be periodicknSo for individual diabatic
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pa_nds Eq.(38) do.es not apply_, their mean veI_ocjty can pe 0=Nf (g +ND frvfl_ (42)
finite. We argue in the following that indeed it is diabatic .

bands, not adiabatic ones, which semiclassically correspond o ] N

to invariant sets of classical phase space, and to which Note thatfe, f,, andv;” are allclassicalquantities. Conse-
relation between band structure and directed transport mu§iiently, also the quantum transport velodity, must coin-

refer. cide with its classical counterpart
Figure 7 provides numerical evidence to justify the as-
S o Justity (Ve =0 (43)

signment of invariant sets to diabatic bands. For example, the

regular island with winding number1 is associated with This is the main result of the quantum-mechanical sum rule.

straight-line segments in the spectrum, corresponding to ®We stress again that it pertains to the semiclassical regime

quantum velocityv, ,=—1 with very small fluctuations. In since otherwise the notion of diabatic bands is not appli-

contrast, chaotic regions are represented by “wavy” bandable.

sections with strongly varying slope to which a precise ve- Figure 7d) confirms Eq.(43) qualitatively. It shows the

locity value cannot be assigned. In this sense, it is legitimatelistribution of quantum velocitiedand slopesfor our mini-

to talk of “regular” vs “chaotic” diabatic bands. mal ratchet model. We observe two well-separated peaks,
In the following we will reconsider the sum rule EQ9)  one for the regular bands af'=-1 and one avg}, for the

using diabatic bands and express the different contributionshaotic bands. The region separating the two peaks corre-

in terms of the invariant sets of the classical phase spaceponds to the band slopes in the vicinity of avoided crossings

First we note that replacing in E¢B9) adiabatic by diabatic between regular and chaotic bands. The weight of the distri-

bands amounts to interchanging band indices at avoideBution in this intermediate region decreases viitand van-

crossings, thus it results at most in a permutation of termsshes in the semiclassical limit— 0.

within the sum but does not affect the sum rule as a whole.

We can therefore group diabatic-band terms in &§) ac- 2 Form factor

cording to the classical invariant set they pertain to, ) . ,
g yP Our analysis based on winding numbers can be applied to

de, de; predict the mean quantum transport velocity in the semiclas-

0= X ok /T > ak /. (40)  sical regime from the classical value. The band spectra, how-

a&ch. bands k rereg. bands K ever, contain more detailed information about quantum trans-
rport, encoded in the spectral two-point correlation functions.
é%\ double Fourier transforme— m,, k—n, and subsequent
squaring of the spectral density translates two-point correla-
tions in the bands into the entire time evolution of the spatial
distribution on the scale of the temporal and spatial periods,
espectively.
_As a suitable quantity to establish this relation, we recur
the generalized form factor introduced and studiefB&]
r completely chaotic systems. We define it as

In the semiclassical limit the respective numbers of terms i
the sums are given by the relative fraction of the phase spa
occupied by the corresponding invariant sets, Ng,=f..N
for the chaotic bands and,=f,N for the various embedded
regular islands. N=h"! is here the total number of bands,
i.e., the Hilbert-space dimension per unit cell. Assuming thaf
the classical phase space contains only a single chaotic co
ponent we can characterize the associated diabatic bander
a mean slopgv ) and haveX < (de, / Ak =Np{vep).

For the regular bands, the double periodicity of tkee) 1 )
space allows us to definginding numbersn the same way K(ny,my) = N<|U(nx, m)|%) (44)
as we did in Sec. Il B for the topology of regular islands in
the conjugate(x,t) space. For the same reason as with thewith
classical winding numbers these topological quantum num- 1
bers have to be rational, i.en"™=n/m if the band closes u(nx,m[):J dk &mknryu
upon itself aftem revolutions in thee andm revolutions in 0
the k direction. As the regular states are localized on the N~
invariant tori inside the island, their velocity expectation =3 | dk @7 kneam
(band slopgin the semiclassical limit approaches the regular w=1Jo
transport velocity. This leads to the conclusion

N
= > uy(n,my). (45)
a=1

de
<—dkr>k-vv?m:vvf':vf'. (41)
N denotes the Hilbert-space dimension per unit cell, which is

Avoided crossings modify the band slopes in a range whictihe phase-space area of a unit cell in units of Planck’s con-
is negligible in the semiclassical limisee Sec. Ill ¢, while  stanth. U, is the NX N Floquet operatof33) evaluated at
the winding numbers as topological quantities are not afBloch numbek. The integers,,m, are the discrete variables
fected at all. In other words, the winding numbe#™ of a  canonically conjugate t& and e, respectively, that is, the
diabatic bandr pertaining to a classical regular islands  unit cell number relative to the starting point, and time in
identical to the classical winding numbev®' of that island, units of the period of the driving. The average) in Eq.

Eg. (8). We have now (44) is essential in order to remove the otherwise dominant
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fluctuations around the mean value. It can be taken over a 3. Quantum velocity distribution

narrow time range or over an ensemble of quantum systems A complementary approximation to the form factor for
correspond|.ng to approximately the same classical system.|ong times can be achieved following again R€f35,36.

As we will now show, the form factor is related, on the the chaotic bands fluctuate as a functionkafiith an am-
one hand, to the classical dynamics of a distribution whlc litude approximately given by the spacinge~NZ+ be-
initially covers homogeneously the phase space of a singlg,een them. For times beyond the Heisenberg time, these
unit cell. On the other hand, it contains the quantum velocityy,,1,ations give rise to phase oscillations in the integrand of

distribution as a limiting case. Therefore it is an appropriateEq. (45) which exceed 2. Therefore we can perform the

starting point for a semiclassical theory of ratchet tranSportiPtegration in stationary-phase approximation and obtain

We assume we are sufficiently close to the semiclassica
limit N>1 such that we can consider the band spectrum in y (n, m)= >, \ill€e! ksmt|e><p(277i[ksnx‘ €, ksmt]),
the diabatic approximation. Moreover, in the semiclassical ¢ =ndm ' ’
limit it is justified to neglect correlations between diabatic wls
bands pertaining to different invariant sdétegular or cha- (49)
otic) unless they are related by symmetries. This allows us '[(Re” only those pointk=k, contribute to the integral where

write the form factor as an incoherent sum of the respectiv?h derivative of the phase of the integrand vanishes,0=
oo S M
contributions, because the averaging in Etf) suppresses _ .1 These are isolated points in the spectrum which can
a,Kg

uncorrelated cross terms. We obtain . S
be assumed to vary independently upon averaging in Eg.
(44). Therefore we can neglect all cross terms when squaring

K(nemy) = 2 Ky (N M) + Ken(Ne M), (46) the sum of contributions from different points of stationary
phase and obtain for the form factor
the sum running over all regular invariant séilands and 1
island chaink Ken(Ny M) = > > i (50)
In Appendix B we obtain the semiclassical expression MHM: o Clup =y
Ke(ne ) = 08, 0 -, m (47) Now that we are rid of all phase factors it is very instructive

to rewrite the result again as an integral over the Bloch num-
for the form factor of a chain of regular islands with winding berk,

numberw,=v,/ u,. It seems that the form factor is enhanced 1 1 n

by a factoru, for an island chain as compared to a single Ken(n,my) = EJ dkﬁ(e;’k— —X) (52
island of equal total size, but this is not the case. In &), MMk o Jo m;

Oun,-vm="1 holds only at the unit cefl=(1/u)M=vM 0 piq equation has two important consequences. First we note

which a classical trajectory, started in the regular island af,a¢ yp to normalization the form factor beyond the Heisen-
n,=0, has traveled in timen. In particular, as), is an inte-  herg time is nothing but the distribution of band slopes, alias
ger,m; must be an integer multiple qf,. That is,K(n,,m) quantum velocities,

is finite only everyu,th period of the driving, such that the

average contribution to the form factor is independent of the K(ny,my) ~ Pquan(v)|v=nxlmt(mt >my), (52

period u, of the island chain. o - N .
For the chaotic contribution to the form factor we can Which is shown for the minimal model in Fig(&. As in the

resort to a semiclassical theory which has been developed fGlassical case, this velocity distribution is the natural quantity
completely chaotic systems j85,36. In order to apply itto  © describe a system with directed ballistic quantum transport

a system with a mixed classical phase space we assume tfAd the form factor can be considered a useful generalization

validity of the ergodic sum rulg37] for the chaotic compo- O it o _
nent. Then the result of35,3§ remains essentially un-  S€cond, Eq(51) implies that the form factor at any time

changed, and the form factor is given in terms of the classicdlt Peyond the Heisenberg timey can be expressed via
velocity distribution of the chaotic component as scaling by the form factor right at the Heisenberg time

KNy, My) LI (m nX m) MHp (nx m)

n , = —, = =

Kch(nx,mt)=—rr:t Pch<ax,mt> (Mm=my. (49 T m N ) T S
H

To be preciseP¢(v,t) entering this equation is the chaotic (me=>myy). (53
classical propagator for a uniform distribution inside the chain the second line we have used the semiclassical approxi-
otic sea, as introduced in Sec. Il E. Its definition is E9).  mation Eq.(48) for m;=m,. It is valid only up to the Heisen-
with pp=xc, Since EQ.(48) is based on the diagonal ap- berg time, but according to E¢51) it determines the form
proximation[38], i.e., correlations between different classi- factor also beyond. Of course, the validity of E§3) de-

cal orbits have been neglected, it is valid only for short timespends on applying both the short-time and the long-time ap-
and breaks down beyond the Heisenberg timg=N., proximations for the form factor right at the Heisenberg time
=~ f.N of the chaotic component. where they are on the verge of breaking down. This interpo-
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lation procedure has been corroborated by comparison to r«
sults from numerics and from supersymmetry 3%,36. We
expect that it applies in the present case of a transportin
chaotic component as well.

The two consequences of E&.1) combine to the conclu-
sion that the distribution of quantum velocities in the chaotic
component of the band spectrum is equal to the distributiol
of time-averaged classical velocities for an ensemble of pai
ticles filling the chaotic component of the phase space homc
geneously. Information on the quantum system enters intw
this classical distribution only via the point in time at which
this velocity distribution is evaluated—it must be chosen as
the Heisenberg timé&., of the chaotic component. Before
writing down this result we note that the restriction to the
chaotic component is actually not necessary, since for th
embedded regular islands the same result applies triviall
because of Eq41). Hence we have

I:)quan(v) = Pglasdv,My), (54

for a stochastic layer including one chaotic component anu

one or more embedded_regular_lslands. Equatiat) IS a FIG. 8. Quasienergy band spectrum of the minimal ratchet
nontrivial result because it establishes quantum-classical cofgqel ath-1=32. The linewidth encodes the overlg,, | ¥)? of
respondence for the velocity distributions and thus forye corresponding Floquet stdi¢, ) with an initial wave packet
asymptoticlong-time transport properties. We stress again |y, in (a) this wave packet is a coherent state located in the chaotic
that thIS I’eSU|t was del’lved SemIC|aSSIca||y W|th|n the d|agO'part of the phase space of a Sing|e unit Ce”(b}‘”t is concentrated

nal approximation. It would be very interesting to explore on a torus inside the major regular islad. Fig. 6a)].

possible corrections due to neglected interferences between

classical periodic orbit¢akin to the weak-localization cor- 1

rection in the standard form fact88]), but at present the U= f Ak |4 20 . (57)
methods to deal with such correctiof®9] are not suffi- o a

ciently developed to treat the type of system we are dealin% i . o o
with here. onsider now a wave packet localized initially within a

single unit cell and, inside this unit cell, on one of the invari-
ant sets of the classical dynamics. Then the weigts/|>
are approximately homogeneouskilbhut concentrated on the
1. Transport of wave packets diabatic bands corresponding to the supporting invariant set.
This is illustrated in Fig. 8. Consequently, the asymptotic
velocity is an average over the corresponding band slopes.
NBor example, for a wave packet started inside the chaotic sea
e expect a value close to the classical chaotic transport
elocity because this is the average slope of the chaotic
bands; see Eq43). We confirm this semiclassical result in
Fig. 9, where the average position of two chaotic wave pack-
s is shown over a large time interval and for two different
values ofN=h"1. In agreement with Eq56), we observe a
1 linear dependence on time with very small fluctuations, i.e.,
p(x,t) =, f K g 1(1) (%) asymptotically there is indeed directed ballistic quantum
a Jo transport. The precise value of the velocity depends on the
1 initial conditions but these fluctuations decrease with de-
=> f dk I#ayke_Z”iEa,ktha’k(x), (55) creasingh and the average approaches the classical transport
a Jo velocity. Typically the quantum velocity for a semiclassical
] N chaotic wave packet is slightly above the classical value.
calculate the expectation valg(t)) of position as a func-  Thjs is a consequence of the hierarchical phase-space regions

C. Long-time quantum transport and dynamical tunneling

So far we have considered transport only in terms of sta,
tionary quantities like eigenstates and band spectrum. Usi
the obtained results we can now describe the transport
arbitrary wave packets. The asymptotic quantum transporf,
velocity of a wave packet is an average over all band slope
weighting each Floquet state by its overlap with the initial
state. To see this we write the wave packet as a superpositi
of Floquet states

tion of time (see Appendix ¢ and obtain around the embedded islands which communicate with the
. main chaotic sea only via leaky cantori. Depending pn
X(1)) = dx X2 = vt +o(t), 56 quantum tran3|lt|ons_ across some of these cantori are possible
V) f_w Nyl =v ® (56) only by tunneling, i.e., they are almost blocked. Therefore

the part of the chaotic component enclosed by these cantori
with effectively belongs to the regular islafdO] and, according
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600 1
P(x,t=0) = f dk ¢ 4(X). (59)
0

We restrict attention to times that are a multiple of the period
w, of the central orbit inside the island. Thest is an integer
which indicates one particular unit cell. We measunela-
tive to that unit cell and find for the wave packet

<X>

1
T(x+wt,t) = f dkexp(— 27 € i) by k(X + W, t)
0

7~ :f dkexd 27 (kw; — € t] by W(X)
s, 2000 0

= exp(— 27i€ o) ¥(X,0). (60)
FIG. 9. Position vs time for wave packets initialized as coherent_ | o .
states inside the chaotic part of the phase space of the minimd/NiS shows that the wave packet is indeed transported like

ratchet model Eq(31). Two different values oh and two different ~ the corresponding classical distribution. It has the asymptotic
initial conditions are used. The dotted line shows the classical chav€locity w, and does not show any spreading, i.e., there is no
otic transport velocity. signature of dynamical tunneling within the approximation
of diabatic bands.

We conclude that tunneling out of an island in classical
phase space is encoded in the avoided crossings between the
regular and the chaotic bands. These avoided crossings show
up in the regular bands as deviations from the straight line
€ o+ o.k. Close to an avoided crossing the regular bands are
bent toward the chaotic bands, i.e., the actual slopeds-
%endent and slightly smaller tham. Using this qualitative

to the sum rule(21), this enhanced island size is compen-
sated by a correspondingly larger chaotic transport velocity

2. Dynamical tunneling

On first sight it may surprise that the division of classical
phase space into invariant sets can influence the long-tim i
guantum dynamics. After all, classically impenetrable barri-'nformat'on e}bqut the shape of the regular bands we can
ers can be crossed in quantum dynamics by tunneling. Tun- ake a prediction for the shape of the wave packet at very

neling is known best for the case of energetic barriers, e.g.arge timest—c2. In th".e’ regime the wave packet_ can be
in a double-well potential. Dynamical tunneling is the gen_dalcqlated from Eq(55) in stationary-phase approximation.
eralization of this phenomenon to barriers in phase spacgve find

[41] and was recently demonstrated experimentgd,43. 1 _

If in quantum dynamics no strict barriers exist, the wave ‘I’(X+X,t):J dkexyd 27ri (KX = € ) I pr 1 (X)

packet should explore the entire accessible phase space for 0

sufficiently long time and consequently directed transport - i1 tlexn2milke . — et X
should vanish, at least on average. We have seen in the pre- 2N |Er'k| P2miLker = &ridt) i)
vious section that this is not the case. So what is the role of
tunneling in Hamiltonian ratchets? (61)

To answer this question we consider a wave packet that igye haye again decomposed the position into a large integer

initially prepared inside the regular island within the unit cell denoting the unit cell and the remaining fractior<®
n,=0. Classically, such an initial distribution is simply trans- _ 1 &, (x) is considered a slowly varying prefactor of the
ported along the chain of regular islands with a velocity Cor'rapidlyr'oscillating phase. The points of stationary phase in
responding to the winding numbes, i.e., Px+Wt.l) o7 select the Bloch states whose superposition yields
=P:(x,t=0). This property is conserved in the quantum dy-he \ave packet at timeand positiorX. It is no surprise that
namics if we neglect the narrow avoided crossings in th§nese are exactly the points for which the slope of the band

band spectrum which account for the difference betweerqrresponds to the velocitf/t. Due to avoided crossings,
adiabatic and diabatic bands. Let us demonstrate this for thge 5ctyal slope of the regular bands is smaller than

regular island in our minimal model which has winding num- yance for the transition to the unit ceX=w,t where all
berw;=-1. The diabatic regular bands are straight lines withe|5ssjcal probability is concentrated, no points of stationary
slopew,, i.e., phase with reak exist: To leading order this process is for-
bidden in quantum mechanics. There might be complex so-
(58) lutions of the equatior; ,=w;, but then the exponent in Eq.
(61) has a real part and the contribution will be exponentially
small int, which is indeed observed in Fig. @). The main
As illustrated in Fig. 8b), a localized initial wave packet can part of the wave packet is concentrated not in the “classical”
be constructed from such a band by a uniform superpositioanit cell but rather at positions for which real points of sta-
of all states tionary phase exist in Ed61). These correspond to veloci-

sr' (=Xt

€ k= &0+ WK.
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FIG. 10. (a) Black line: Wave packet prepared in the regular island of the unitxeell and propagated to tinte=1000 in the minimal
ratchet model Eq(31) with h™1=16. The classical probability would be restricted to the unit xel-1000, while the quantum wave packet
has tunneled out of this “classical” unit cell and starts spreading. However, there is a large peak lagging slightly behind the classically
expected position. Gray line: Same for irratiohat=16+o. In this case the Floquet operator has no spatial periodicity. The part of the wave
packet outside the classical unit cell localizes and develops an asymmetric envelope with approximately exponential tails. Inset: The
probability to remain inside the classically expected unit gel-1000 is the same for rational and irratiorfal (b) Due to dynamical
tunneling the quantum probability in this “classical” unit cell decays exponentially as a function of time. With respect to this decay the
periodic model withh™'=16 is almost indistinguishable from the aperiodic model with irratidnak 16 +o-.

ties distributed narrowly around a value slightly below theisolated and semiclassically small regions knspace the
classical velocity. Due to this dispersion in the velocities,bands are approximately straight lines bwith opposite
induced by avoided crossings, the wave packet will spreadlopes i.e., there is no systematic degeneracy. In this paper
ballistically in time and will be peaked behind the classicallywe consider wave packets initially localized inside one unit
expected positiofiFig. 10a)]. cell. Ink space such a wave packet is extended. Therefore its

For a wave packet initially prepared in the chaotic part ofweight in the vicinity of avoided crossings, where it contrib-

a unit cell the influence of tunneling is much less pronouncedites to tunneling, is negligible. By contrast, in the experi-
(not shown. Although the narrow avoided crossings with ments mentioned above the wave packets extend initially
regular bands do modify the chaotic bands as well, the exissver many unit cells. Therefore, knspace they may well be
tence of points of stationary phase in an expansion similar teoncentrated right at avoided crossings. Then, and only then,
Eqg. (61) is unaffected: due to the wide avoided crossingsdynamical tunneling is the expected consequence.

between themselves, the chaotic states have a large variation
in their velocities around the classical value anyway.

We have thus identified the role of tunneling in Hamil-
tonian ratchets. It leads to avoided crossings between regular In this last section we will describe some modifications of
and chaotic statefor between regular states with different the quantum transport in a situation, when the exact quantum
winding numbers In the dynamics of initially localized periodicity is destroyed by weak static disorder. As explained
wave packets tunneling shows up mainly in the evolution ofabove in Sec. Il A this can be realized easily within our
regular states, which slightly lag behind the position ex-minimal ratchet model by choosing an irrational valuehof
pected from classical considerations. We stress again thét this case the Bloch theorem does not apply any more and,
tunneling is not able to hinder directed ballistic transport ofon a large scale, we expect dynamical localization of wave
such wave packets even for infinite time. packets and eigenstates. The properties of the eigenstates and

An interesting and important special case are systemi particular the failure of the semiclassical eigenfunction
with a symmetry-related pair of countermoving regular is-hypothesis in this case have been studied2n]. We will
lands like the kicked rotor in the presence of acceleratohere concentrate on the evolution of wave packets in the
modes. Dynamical tunneling between such island pairs wagresence of disorder. In Fig. 1@ray line we display the
demonstrated experimentall¢#2,43. It is crucial to under- shape of a wave packet which was initialized in the regular
stand the difference between our argumentation above arigland of unit cellX=0 at timet=1000. Initially the wave
this situation. First we note that a pair of symmetry-relatedpacket follows the classical evolution, i.e., it is transported at
islands isnot analogous to a symmetric double-well poten-velocity v=-1 and loses probability due to tunneling. The
tial. In the latter case all eigenstates are superpositions of lefirocess of tunneling out of the island is essentially the same
and right. Below the barrier top, their eigenenergies formas in the case of a periodic system with ratiohalThis is
guasidegenerate doublets and thus contribute to tunneling. flemonstrated by Fig. 16) and also by the inset of Fig.
the case of countermoving islands this applies only to thel(a), where one can see that the probability remaining in-
vicinity of avoided crossings between the correspondingside the classical unit cell is the same for both systems. How-
bands where indeed they form a doublet. Away from thesever, the fate of the probability which has tunneled out of the

D. Quantum transport in the presence of disorder
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‘ - 10° pears circumstantial, at most of heuristic importance for the
| -~ -h=1/(16+0)] theoretical description. Translation invariance has been indis-
pensable, however, in order to achieve first analytical and
« o numerical results on directed transport in ratchets. In the
z © present context of Hamiltonian systems, it allowed us to
00600 show that directed transport comes about by counterpropa-
gating phase-space flows within regular and chaotic compo-
x V=0-12 nents of systems With_ a mixed pha_se_ space. Moreover, quan-
x tum ratchets are obtained by quantizing Hamiltonian ratchets
in the framework of Bloch theory; they exhibit transport at
o a0 % 100 200  Similar rates as their classical counterparts, at least in the
t 1/h semiclassical regime.
Real systems showing directed transport, biological or
FIG. 11. (Left) Averaged velocity expectation values of wave physical, though, break translation invariance in various
packets initialized in the classically chaotic region @b.po)  ways and to various degrees, the only exception being sys-
=(0,0.25+0.05. Beyondty,, the velocity oscillates around zero. tems where the spatial coordinate is cyclic, as in biological
(Right) Time tya at which the averaged velocity expectation value “rotation motors” or pumping devices in a closed configura-
falls short of a given limit under variation df. For numerical  tjon [45]. In the following we discuss a number of typical
reason, we chose two different values fqp,. deviations from spatial periodicity and their consequences
for transport. Since quantum systems are far more sensitive
island is entirely different from the periodic case. We see into the presence or absence of symmetries than classical ones,
Fig. 10@) that the wave packet develops exponential tailsthe question concerning imperfections of translation invari-
which are characteristic of localization. Unlike the periodicance becomes even more crucial on the quantum level.
case, the maximum of the wave packet is not close to the Experimental realizations of Hamiltonian ratchets, as in
classical expectation but rather close to the origin, i.e., theptical lattices or in solid-state devices, always show a cer-
disorder prevents quantum transport despite the underlyinin amount ofdisorder, in the form of small stochastic dif-
classical ratchet mechanism. The latter is manifest, howeveferences between the unit cells. Classically, smooth spatial
in the asymmetric shape of the wave packet which has disorder, if it is not too strong, will not completely disrupt
much longer tail in the direction of classical transport. the phase-space structures underlying transport on short time
Similarly, disorder does also affect wave packets that arscales; thus it has only a minor effect on transpd6]|. For
initialized in the chaotic sea. Figure (8] shows the velocity long times, however, we expect that transport is destroyed. In
expectation value for such a wave packet at two differenextended quantum systems arbitrarily weak randomness in
values of the effective Planck’s constdmtThere is an initial  the potential immediately leads to localization. As we show
period when(v)~uv, but then the velocity drops to zero in Sec. Ill D, even a type of disorder that is invisible in the
because the wave packet tunnels into the island and finallglassical dynamics entails a breakdown of quantum transport
occupies the whole available phase space. The time for thign a time scale proportional to the localization length. It
process is expected to scale tase®" [44]. As Fig. 1Xb)  should be kept in mind, however, that localization as a quan-
shows, this is also the time scale for which the quantuntum coherence effect is counteracted, in turn, by incoherent
ratchet shows transport in the presence of disorder. Thigrocesses caused by the unavoidable coupling to ambient
maximum ratchet operation timg,,, can be defined as the degrees of freedom, or similarly by a “noisy” driving that
time at which the velocity of a wave packet falls below abreakstemporalperiodicity. While it is well known that in
certain threshold. In Fig. 1) log;¢tmax iS Seen to depend this way, incoherence partially restores diffusive transport in
approximately linearly o™ Hence, in the deep semiclas- systems with dynamical localizatidd7], its effects ondi-
sical regime the quantum ratchet can work over an exponeriectedtransport remain to be explored.

tially long time even in the presence of static disorder. The presence of apatially homogeneous fordereaks
translational invariance in a more controlled yet radical man-

ner. Rather than forming an unavoidable nuisance, it may be
imposed intentionally to extract work from a ratchet. More-
The study of ratchets has largely been motivated by thever, it allows us to define atall force as the external bias
interest in the physical principles of intracellular transport.just sufficient to bring transport to a standsfdi8], and to
Motor molecules, driven by chemical energy, are movingascribe an efficiency to ratchets. In contrast to disorder, a
along chain molecules whose length is of the order of the celfinite mean potential gradient forms a perturbation of un-
size, and which consist of millions of units concatenated in @oounded amplitude, and thus radically changes the structure
highly ordered manner, resembling the crystal order encoursf the classical ratchet phase space. Still, as explained in Sec.
tered in inorganic solids. It is therefore natural to model themll F, directed regular transport reacts smoothly on an external
as one-dimensional, infinitely extended potentials with exacbias, i.e., it requires a gradient of the order of those present in
spatial translation invariance, but with reflection symmetrythe original periodic potential to be completely suppressed.
manifestly broken to define a preferred direction of transportOn the quantum level, additional complications arise in that
While the breaking of mirror symmetry is crucial to ob- eigenstates become metastable and eigenenergies corre-
tain directed transport, the role of translation invariance apspondingly complex. This situation can be handled in a

0.2

IV. DISCUSSION
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framework similar to scattering theof$9]. Its application to  existence of such a function is an assumption which simpli-
ratchets is under way. fies our reasoning.

Finally, in most physical setups, transport takes place be- We consider the average of the functip¢,t) along the
tween two “terminals,” typically modeled as electron reser-torus and replace the integral representation of this quantity,
voirs. This amounts to confining the ratchet proper to a finiteEq. (25), by a Riemann sum oveM— « discrete points,
section of space—yet another elementary way to break trans=n/N, p,=p(&,, 7),
lational symmetry. Taking it into account would allow one to N
make contact with a different, but closely related paradigm _
of directed transportPumpsare devices that channel a well- p(7) ~ 2 (&1~ €)Pn-
defined amount of charge, mass, etc., per cycle of an applied i
force from one terminal to the othdb0,51. Obviously, Similarly we introduce a discrete time incremeittand find
pumps can be considered as ratchets reduced to a finite nurtirat theN phase-space points,,, p,, 7) in Eq. (A1) evolve to
ber of unit cells, or conversely, ratchets could be constructedz 5 7+ 57) with
by concatenating an infinite number of pumps or equiva-
lently by closing the pumping circuit. The only difference En: £+ PndT, Pn=pn—V' (&, 7). (A2)
lies in the kind of model usually studied in these respective ) ) ) )
contexts, namely, fast drivings resulting in a chaotic dynamNow we use these new points to discretize the integral rep-
ics in one case, slowly driven potential wells that resembld€sentingp(7+57). In this way we obtain an expression for
peristaltic pumps in the othd50]. But this is an artificial the time derivative op, which we evaluate to leading order
distinction: It has been shown recently that driven chaotid o7 andN™* and then transform back to an integral. We
scattering systems, employed as pumps, also generate @btain
rected transport if all relevant binary symmetries are broken q LN
[52]. 2B ~ T _EVH - -

In order to study ratchets as realistic devices clamped be- drp(T) 5721[(5”+1 §n)Pn ™ (Ene = 0)Pal
tween reservoirs at given temperatures and chemical poten-

(A1)

N
tials, however, another crucial building block is missing, a 21 1 +(Oras =)
quantum statistical theory of transport under strong time- Cors |IN Pn+1= Pn)OT
dependent driving far from equilibrium. For first approaches
to this problem from the points of view of quantum scatter- A\ 1
ing and quantum transport theory; see RE#8,45, respec- X[p” v (5“’7)57] an
tively. N
1 ’
~ 21~V (&7 + (Pra = popy
=1
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lombia. APPENDIX B: GENERALIZED FORM FACTOR
FOR AN ISLAND CHAIN

For the last line we have used the periodicity of the function
p(&, 7) with respect tc€. By integration with respect te we
find Eq. (26) which was the purpose of this appendix.

In this appendix we derive Eg¢47). We consider the con-
tribution to the form factor from one particular chain of regu-
lar islandsr. If the winding number isrvf':vr/,ur then inside

In this appendix we consider a noncontractible KAM a unit cell this island chain consists gf islands which are
torus that can be specified by the functional dependence dfaversed in sequence. In the semiclassical limit, we associate
the momentum on position and tinEé,t). Note that the (diabati) bands with indexa to the island chain. These

APPENDIX A: CHANGE OF MEAN MOMENTUM
OF A KAM TORUS
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bands consist of straight-line segments with the slage 1

=w; cf. Eq.(41). The segments are connected such that the Px=2> f dK g k(1) g k(%)

d|abat|c band as a whole is periodicdrandk, with periods a 70

v, and u,, respectively. It is easy to see that for a given value 1 .

of k there areu, equidistant segmentsalues of the quasien- => f dK i, k€ 2T ak gh, (), (Cy
ergy) pertaining to the same diabatic bamdSemiclassically, a 70
the number of states associated with the island chain for h

givenk is approximatelyf,N wheref, is the fraction of the ere

phase space occupied by the island chain as a wholéNand +oo

=h1is the total number of bands. It follows that the number lﬁak—J dx &, (X (x,t=0). (C2)
of complete diabatic bands associated with the island is - '

TN/ .

To integrate over a diabatic band consisting of manyThe integral representing the expectation valu& éér the
straight segments it is convenient to consider instead an exvave packetC1) can be split into two contributiong, X
tended Brillouin zone in which the band corresponds to ecorresponding to length scales within a unit cell and over
single straight line many unit cells, respectively,

+oe

er,a,k=<er,a,o+ﬁk> modl, kE[0,u). (B1) X(t)=f dXAﬂx,t)|2=f dx > (x+n)|gx+n,t)[?
My -

P—
_ _ o = &(t) + X(1). (C3
In this way we can perform thleintegration in Eq(45) and
find Naturally, the contribution from the dynamics inside the unit
cells is bounded from above by the size of the unit cell
Ug(ny,my) = f " dk 20l ot I 1
0 g(t)=f dx x>, |l/l(X+n,t)|2$f de l(x +n,t)>=
1 0 n=-o n=-o
- /.Lre_ZWiEr'a'Omtf dx eZwi(/LrnX—Vrm[)K (C4)
0
= p e 2meaoy (B2) (the last equality expresses the normalization of the wave
' PPy packej. Therefore¢ is irrelevant for directed ballistic trans-
ort.
For the contribution of the island chainto the form factor b Evaluating the term that describes the wave packet on
we have now large scales, we use the Bloch theorem to switch from posi-
tion representation to the conjugate variak|avhere a spa-
1 N/ 2 tial shift corresponds to differentiation. We have
nX1 rnt) - N 2 Moy € 2T a0mt5 vy ’ 1
nlﬁ(x + nvt) = nE f dk lzba k(t)¢a k(X + n)
(83) a 0 ' Y
1
i.e., we have to perform a sum over quasienergies at fixed = Ef dk zpavk(t)cz)avk(x)nez”‘k“
Bloch numberk=0 which can be done in the same way as
for the spectrum of eigenenergies pertaining to regular states mikn
of an autonomous systefb4,55. We assume the dynamics => f dK i, k(1) Py k(X ) ;
within the island to deviate sufficiently from harmonic vibra- '
tions around its central orbit. Then the spectrum of quasien- e2mikn g
ergiese; , o Will not be equidistant and the phases in E3) ==> J npa k(D) Py k(X).

from different « can be assumed uncorrelated in the semi-
classical limit. This allows us to repla¢g, - -|? by the num-

ber of terms in the sum, which finally yields E@t7). The last line follows from partial integration and the period-
icity in k of €Ky, (1) b, (X). Inserting this into

APPENDIX C: WAVE PACKET TRANSPORT 1 +e
- t) f dx >, ng(x +n,t)[2
We compute the average position of a wave pagKgit) 0 ne—e

for long timet>1. First we write the wave packet as a su-
perposition of Floquet eigenstates, ((x) with quasienergy and decomposing also the complex conjugate+n,t) into
€nko Floquet states, we find
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1 1 g2mitkk)n this expressiom/dk acts on a product of three terms, but as
f dxz E dkf dk’ t— o the dominant contribution comes from the derivative
n=== g’ <0 0 of the exponential. Neglecting the other two terms which are
bounded, and using the orthonormalization of Floquet states
X 1// ,k,(t)¢ ,k,(x) z,ba k() D k(X) we finally obtain Egs(56) and (57).
For higher moments of the spatial distribution the argu-

ment can be repeated and an analogous result is obtained
=- de J dk
27TI
—2mie, |t m\ — +m 2 dea k m-1
X i (D, ,k(X) Dk K b K(X). (x=xM]") =t E dkll/fak| +O(t™).
The last line follows here from Poisson summation avdn (CH)
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